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ARTICLE INFO ABSTRACT

Keywords: The cost-effectiveness and reduced human effort employed in setting up acoustic monitoring in the field makes

Acoustic monitoring bioacoustics an appealing option for wildlife monitoring. This is especially true for secretive vocal species living

Rock ptarmigan in remote places. However, acoustic monitoring still raises questions regarding its reliability when compared to

Point-count protocol other, human-driven methods. In this study we compare different approaches to count rock ptarmigan males, an

i:;%:;j:; isrtnlflgrymation alpine bird s?ecies w}?ich lives at high altit.udes. The monitoring of ro.ck pt:armigan populations is tradit.ionally

Methodology comparison conducted using a point-count protocol, with human observers counting singing males from a set of different
points. We assessed the (1) feasibility and (2) reliability of an alternative counting method based on acoustic
recordings followed by signal analysis and a dedicated statistical approach to estimate the abundance of males.
We then (3) compared the results obtained with this bioacoustics monitoring method with those obtained
through the point-count protocol approach over three consecutive years. Acoustic analysis demonstrated that
rock ptarmigan vocalizations exhibit an individual stereotypy that can be used to estimate the abundance of
males. Simulations, using subsets of our recording dataset, demonstrated that the clustering methods used to
discriminate between males based on their vocalizations are sensitive to both the number of recorded signals, as
well as the number of individuals to be discriminated. Despite these limitations, we highlight the reliability of
the bioacoustics approach, showing that it avoids both observer bias and double counting, contrary to the point-
count protocol where this may occur and impair the data reliability. Overall, our study suggests that bioacoustics
monitoring should be used in addition to traditional counting methods to obtain a more accurate estimate of rock
ptarmigan abundance within Alpine environments.

1. Introduction diversity, resulting in minimal impact to the environment (Towsey
et al., 2014; Sueur and Farina, 2015). Importantly, it enables to focus on
Acoustic monitoring is becoming an effective mean to assess wildlife species used as bioindicators as well as of patrimonial or economic
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concern. The use of acoustic monitoring is usually motivated by the
difficulty in observing the species because of its secretive behavior or
the difficulty in accessing its habitat (Hoodless et al., 2008; Vogeli et al.,
2008; Marques et al., 2009; Buxton and Jones, 2012; Dugan et al.,
2013; Marques et al., 2013; Andreassen et al., 2014; Ulloa et al., 2016).
Levels of investigation range from the simple assessment of species’
presence/absence to more complex studies that aim at determining the
number of individuals present on an area. Depending on the species,
these approaches may require the discrimination of individuals (Terry
et al., 2005; Pollard et al., 2010), which is only possible when vocali-
zations contain individual vocal signatures based on morpho-physical,
genetics and/or learning abilities (Kroodsma, 1982; Tibbetts and Dale,
2007; Catchpole et al., 2008; Taylor and Reby, 2010; Nowicki and
Searcy, 2014; Tamura et al., 2018).

Although acoustic monitoring is promising, it still raises several
potential issues: high cost of monitoring material, design of monitoring
protocols, analysis of long-duration recorded signals, weather condi-
tions impacting the quality of the data, needs of bioacoustics experts for
data analysis, and sensitivity to the density of the species (Budka et al.,
2015; Linhart and Salek, 2017). To the best of our knowledge, acoustic
monitoring has not yet replaced other protocols. Point-counts protocols
(Lancia et al., 2005) are still largely used to provide estimates of the
number of individuals. However, these conventional, human-operated
methods are exposed to biases due to inter-individual differences be-
tween observers, unpredictability of field conditions, and biological
parameters such as species abundance (Tyre et al., 2003; Bart et al.,
2004; Lotz and Allen, 2007; Elphick, 2008; Fitzpatrick et al., 2009).
Moreover, individuals of species emitting long-range signals can be
counted by several observers simultaneously, leading to double
counting and abundance overestimation. Besides, human presence can
disturb birds’ behavior making them stop singing and leading to po-
pulation underestimation.

While previous works have explored the technical feasibility of
acoustic monitoring based on vocal individual signature (Terry and
McGregor, 2002; Hartwig, 2005; Grava et al., 2008; Policht et al., 2009;
Adi et al., 2010; Feng et al., 2014; Budka et al., 2015, 2018; Peri,
2018a) most field applications were based on sounds recorded from
already known individuals (O’Farrell and Gannon, 1999; Peake and
McGregor, 2001; Vogeli et al., 2008; Digby et al., 2013; Peri, 2018b).
To the best of our knowledge, there is no published study investigating
the generalization and reliability of an acoustic monitoring approach
based on individual vocal signatures aimed at estimating the number of
individuals in real field conditions. Focusing on the rock ptarmigan
Lagopus muta in France, the present paper reports a multi-year study
aimed at assessing the potential interests, as well as the caveats, of
acoustic monitoring by comparing performances of this approach with
a traditional point-count methodology.

The rock ptarmigan is a bird species that inhabits the northern parts
of Eurasia and North America. In France, its range is restricted to sub-
alpine and alpine habitats (altitude > 1800 m) of the Pyrenees and the
Alps Mountain ranges (Sale and Potapov, 2013). This species is secre-
tive and difficult to access. It is highly adapted to its environment, has
mimetic plumage and vocalizes at dawn and dusk (MacDonald, 1970).
Population abundances are decreasing in both the Alps (Imperio et al.,
2013; Furrer et al., 2016; Martinoli et al., 2017) and the Pyrenees,
where they are threatened by both climate change and habitat trans-
formation (Revermann et al., 2012; Bech et al., 2013). Due to these
extreme environmental and selective pressures, rock ptarmigan is often
considered as a bioindicator of the ecosystem health, a sentinel and
umbrella species for biodiversity conservation of the alpine environ-
ments (Sandercock et al., 2005; Hanser and Knick, 2011; Henden et al.,
2017).

During the mating season (May-June), males display courtship ri-
tuals, which often includes simple, pulsatile vocalizations as well as a
peculiar “singing in flight” behavior before dawn (MacDonald, 1970).
The flight is hyperbolic, and vocalization starts when the bird reaches
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the point of highest altitude. Point-count protocols rely on this acoustic
behavior to evaluate the number of males after they have established
their breeding territories (Bossert, 1977). Although vocalizations are
loud and easily heard by an observer, low visibility, birds’ mobility,
frequent harsh weather conditions and other constraints associated
with the alpine environment are likely to increase the possibility of
double counting and overestimation of the monitored population.
Conversely, this may also impair song perception by observers
(Andreev, 1971). The use of an acoustic monitoring technique could
provide a feasible alternative as a response to these difficulties and
potential biases. Despite these constraints, rock ptarmigan presents
several advantages in terms of monitoring. Vocalizations are easily re-
cognizable, population densities are generally low (around 5 males/
km?), and males are mostly located in stable territories which facilitates
their localization and recording.

The present study proposes (1) to assess the individual vocal sig-
nature embedded in rock ptarmigan males’ calls, (2) to test the feasi-
bility and reliability of a bioacoustic monitoring approach over several
years, and (3) to compare the results obtained using this approach to
those obtained with a traditional point-count protocol and long-term
field observations.

2. Material and methods

We performed this study in 2015, 2016 and 2017, at the ski resort of
Flaine (French Alps, Haute-Savoie, 45°59’32.8”N 6°43’44.2”E; altitude:
1600-2500 m).

2.1. Counting of singing males

We used three different methods to evaluate males’ abundance: a
point-count protocol, long-term observations and acoustic monitoring.
The latter was followed by signal processing and statistical analysis.

2.1.1. Point-count protocol

The counting area was delimited empirically to cover roughly
100 ha (Fig. 1). Previous field observations and literature reviews had
suggested that male ptarmigans could be heard at distances of
500-1000 m (Watson, 1965; Bossert, 1977; Marty and Mossoll-Torres,
2012). We selected three counting points, approximately 500 m apart
from one another to maximize the listening area (Fig. 1). These
counting points were located at precisely the same positions over the
three-year period of study. The counting procedure followed that pro-
posed by Léonard (1995), which was based on the work of Bossert
(1977). Three experienced observers, with previous knowledge of the
field (TMC, FS, BMJ; 1 per counting point), accompanied by volunteers,
were placed at each point. As ptarmigan males mainly display their
acoustic signal early in the morning, the observation periods started at
4.30 a.m. and ended at 5.30 a.m. The observers were positioned 15 min
before the beginning of the observation period. Throughout the ob-
servation period, each observer noted on an observation form (with a
drawn map of the area) the timing, the number and the approximate
estimated locations of the vocalizing ptarmigans. At the end of the
observation period, BMJ collected all observers’ forms.

To estimate the total number of males in the area, we counted 1
male for each group of neighboring vocalizations indicated on the maps
(each group had to be clearly separated from the others; see Fig. 1).
Each male was confirmed by cross-checking the observers’ data. To
avoid double-counting by two different observers, vocalizations loca-
lized nearby and heard at approximately the same time (interval <
20s), were considered identical. We considered the total number of
males unambiguously localized as the minimum total number of males.
To take into account ambiguous localizations (e.g. when one observer
noted two birds on the same location while another observer noted a
single one) we defined a maximum total number of birds by adding
these ambiguous males to the minimum total number. We thus defined
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Fig. 1. Study area in 2017. The black stars with a
white dot correspond to the three counting points
(position of the observers). The bold black contour
shows the estimated area covered by the point-count
protocol (this boundary is not circular due to the
topography). The green dots indicate birds’ locations
as estimated by the observers during the three con-
secutive counting days (each shade of green corre-
sponds to a different day). Two methods were further
used to check and record male’s individual identity:
GPS localizations (red minimum convex polygons
calculated from the GPS points obtained during the 3
counting days), VHF and visual checks (yellow 250 m
diameter circles, the center is the position where
males were recorded and located). Grey lines indicate
altitude contours (30 m separate two contours lines).
The red arrow shows the direction of one male out-
side the study area for which the vocalizations were
included in the recording data bank (called the
“isolated” male).

7/
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an estimated interval (min-max) of the total number of males. This
procedure was repeated on several consecutive days namely: June 3rd
and 4th in 2015 and 2016; June 6th, 7th, 9th in 2017.

2.1.2. Long-term observations and acoustic recordings

After the point-counting days, two bioacousticians (TMC and FS)
remained in the field for a period of one month to observe and record
all the birds present in the area (recording material: Sennheiser MKH70
shotgun microphones connected to Marantz PMD 660 recorders; sam-
pling rate: 48,000 Hz). This was an important long-term observation
effort aimed at ensuring a thorough knowledge and identification of
each bird present within the area, which may have been acoustically
recorded during the point-count protocol. The resulting number of
males spotted by this technique therefore represented the expected
maximum value that could be deduced using the other methods.

Despite this effort however, we were only able to record birds
during 7, 9, and 15 days in 2015, 2016 and 2017 respectively, primarily
due to the harsh weather conditions. We used two different strategies in
order to build up our bank of recordings:

1) Recording of non-identified birds before sunrise (4.30 am. — 6
a.m.), i.e. during the time slot corresponding to the spontaneous
singing activity peak. Due to the low ambient luminosity, the re-
corded males could not be visually observed and identified. The
recording data sets were thus named: “unknown datasets”. Each
day, both bioacousticians recorded from different locations within
the study area to sample a maximum number of males.

2) Recording of identified birds (6 a.m. — around 10 a.m.). In 2017, we
equipped 5 males present on the area with GPS solar tags (e-obs
GmbH, Griinwald, Germany), and used these tags to pinpoint the
males with their individual UHF (Ultra High Frequency) radio-
frequencies. One male had already been equipped with a VHF (Very
High Frequency) radio-emitter collar since 2015. Two additional
males were identified using visual cues only. Both had mated with
females and remained within stable and well-defined territories. The
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combination of direct observations and GPS localizations greatly
minimized the risk of mis-identifying or confounding males during
recordings. A ninth male had its territory on a neighboring summit
(3 km away). As this male was alone on this site and easy to identify,
it was thus added to the recording database (total = 9 birds in
2017).

The recording strategy was as follows: after sunrise, when the peak
of males’ vocal activity ended, we played back calls from an individual
recorded in another area to elicit the focus male’s territorial response.
This allowed us to record each focus male while double-checking for its
individual identity.

In the preceding years (2015 and 2016), we used the same approach
although the results of the field effort were weaker:

- June 2016: 5 males recorded. Two of the males were equipped with
GPS tags and 3 other males were identified using visual observations
only.

- June 2015: 7 males recorded. One male was equipped with a VHF
radiotransmitter necklace; 6 males were identified using visual ob-
servations only.

The 2015, 2016 and 2017 recording data sets obtained with this
method were named “known datasets”.

2.2. Acoustic analysis of recorded signals

2.2.1. Data bank of calls

Rock ptarmigan vocalizations are sequences of pulse trains, with
energy spread over a frequency spectrum ranging from 900 to 3700 Hz.
There are two major types of calls, namely short and long calls. These
differ by the number of successive pulse trains, namely 3 and 4 re-
spectively (MacDonald, 1970; Watson, 1965). For the present study, we
focused on the short calls, which are the most frequently recorded
(Fig. 2). Our annual data bank of calls consisted of the following:
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Fig. 2. Acoustic analysis of the Rock ptarmigan short call. (a) Frequency spectrum; (b) Spectrogram (windows length = 1024, overlap = 99%) and oscillograph; (c)
Detail of two successive pulses showing measurement of inter-pulses duration (used to calculate pulse rate); (d) Oscillogram illustrating variation in inter-pulses
duration. The call has been filtered with a 300-3500 Hz bandpass filter to reduce background noise.

- 2015: 183 short calls, of which 100 were of sufficient quality (in
terms of signal-to-noise ratio) to be analyzed (“unknown” dataset:
75 calls; “known” dataset: 25 calls, 3.6 + 2.4 calls/male, min = 1
call, max = 8 calls).

- 2016: 249 short calls, with 98 of sufficient quality (“unknown”
dataset: 66; “known” dataset: 32 calls, 6.4 = 2.3 calls/male,
min = 4 calls, max = 10 calls).

- 2017: 180 short calls, with 133 of sufficient quality (“unknown”
dataset: 52 calls; “known” dataset: 81 calls, 7.1 * 3.9 calls/male,
min = 3 calls, max = 24 calls).

2.2.2. Automatic detection of group of pulses

Due to harsh weather conditions (wind and rain), recorded signals
were frequently corrupted by noise. Before performing the automatic
detection of pulses, we first filtered the signals with a 950-2700 Hz
bandpass filter, and then processed a wavelet continuous transform
(WaveleComp R package, Roesch and Schmidbauer, 2018) to optimize
the signal-to-noise ratio (see Supplementary Material for details).

After denoising, amplitude pulses were detected using a customized
script (Seewave R package, Sueur et al., 2008). The absolute amplitude
of the signal was first smoothed using a Daniell kernel (length = 100).
The time position of the pulses was then identified using an amplitude
threshold fixed at 3% of the maximum amplitude of the considered
signal.

Pulses were gathered in “groups” (G1, G2, G3, see Fig. 2) by auto-
matically measuring intervals between pulses (Fig. 2c) and computing
the ratios between two successive intervals (Fig. 2d). Ratios superior to
1.7 characterized boundaries between groups of pulses (Sill and Sil2;
see Fig. 2b).

2.2.3. Measurement of acoustic parameters
We measured 12 acoustic parameters from groups of pulses G1 and
G2 (see list in Table 1). We chose to ignore the G3 group, as the signal-
to-noise ratio of this part of the call was usually very weak (this was
mostly due to males flying away from the recorder while singing).
The mean acceleration (Acc.G1) was calculated as follows:
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where n is number of pulses in G1; Pr is the pulse rate and t is the time
of occurrence of the pulse’s maximum amplitude.

The normalized Pairwise Variability Index (nPVI) is an index com-
monly used in phonetic studies (Grabe and Low, 2002) to illustrate the
variability between consecutive pairs of intervals:

= Pl"k - P}’k+1
nPVI = 100 X kZ::l |W|

We used continuous wavelet transformation to calculate the peak
frequency parameters (Fq1.G1 and Fq2.G1). Since pulse locations in the
signal had already been calculated, each pulse was isolated from the
original sound, filtered with an 800 — 3000 Hz passband filter. For each
pulse, wavelet power spectrum was then calculated. The two scales
with the maximum power were then selected. The scales were further
multiplied by the Fourier factor 6/(2x) to obtain the classical Fourier
periods (Aguiar-Conraria and Soares, 2011) with the corresponding
frequencies. The median of each peak frequency was then calculated
across the entire pulse train. Overall, medians were preferred to means
since they are more conservative and less influenced by possible out-
liers resulting from analytical errors (e.g. due to rain drops occurring
within a pulse group).

2.3. Acoustic space and individual vocal signatures

In order to build a functional tool allowing the acoustic dis-
crimination between rock ptarmigan males, we proceeded as follows: 1)
we built a 4-D acoustic space with a dedicated discriminant analysis
which optimized separation between males using the 2017 “known”
dataset (reference dataset); 2) we used this acoustic space to perform an
unsupervised clustering analysis using the reference dataset for tuning
the clustering hyperparameters; 3) we applied the workflow (centering,
projection in the acoustic space and then tuned clustering) on the 2015,
2016 and 2017 complete data sets to further estimate the number of
males present each year.
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Table 1
Acoustic parameters describing the acoustic structure of the male ptarmigan call.
Category Acoustic parameter Mean * sd Min Max
Pulse number Number of pulses in G1 PIn.G1 15.88 = 3.51 8.0 25.0
Number of pulses in G2 PIn.G2 2.47 + 0.55 2.0 4.0
Temporal G1 duration (sec) Dur.G1 0.31 = 0.06 0.18 0.47
G2 duration (sec) Dur.G2 0.031 + 0.009 0.016 0.054
Duration between G1 and G2 (sec) Sill 0.38 = 0.03 0.33 0.48
Duration between G2 and G3 (sec) Sil2 0.09 = 0.02 0.048 0.14
Pulse rate Pulse rate Median in G1 (sec) Plr.G1 0.021 + 0.0031 0.0145 0.028
Pulse rate median in G2 (sec) Plr.G2 0.022 + 0.0034 0.0147 0.031
Mean acceleration in G1 Acc.G1 22.51 * 24.32 —-31.22 130.59
nPVI in G1 nPVI.G1 5.42 = 3.98 1.56 28.76
nPVI in G2 nPVLG2 4.16 + 6.34 0 20.84
Frequency Median of the first peak frequency in G1 (Hz) Fql.G1 1.12 = 0.06 0.97 1.30
Median of the second peak frequency G1 (Hz) Fq2.G1 2.25 = 0.11 1.93 2.50
2.3.1. Acoustic space definition
We analyzed the differences between calls from the individuals of
the 2017 “known” dataset (9 identified males) using powered partial o
least squares discriminant analysis (PPLS-DA, Liland and Indahl, 2009; 0.05 e
“pls” R package, Mevik et al., 2016). PPLS-DA enables more accurate Q %
analysis of a small sample size with a high number of acoustic para- Ooo
meters, better than the linear discriminant analysis signatures (Hervé o9
et al., 2018), commonly used in studies on animal vocalizations. PPLS- Comp3 0 oo
DA calculates new variables as combinations of all centered acoustic
variables, leading to a new acoustic space optimizing the discrimination
between individuals. The number of dimensions was chosen by model
cross validation (Szymarnska et al., 2012). The mean classification error -0.05
rate was established after 100 model cross validations for each number
of dimensions (varying between 2 and 11, Fig. 3). We followed an 01
analog method of the elbow method (Cattell, 1966) to assess the op-
timal number of dimensions and we considered the first four PPLS-DA
Comp 1

variables, which define a 4-D acoustic space and explained 36.52% of
the variability (see Results and Fig. 4).

We tested the statistical significance of our PPLS-DA model with a
procedure implemented in the RVAideMemoire package (Westerhuis
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Fig. 3. Variation of the mean classification error rate according to the dimen-
sions number of the acoustic space established by the PPLS-DA. The mean error
rate is calculated after 100 model cross-validations for each dimension in the
new space. The red dot shows the selected number of dimensions for the new
acoustic space (following “elbow method”, Cattell, 1966).
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0

-0.1

Comp 2
Fig. 4. Position of ptarmigan males’ vocalizations in the first 3 dimensions
acoustic space defined through PPLS-DA using the 2017 “known” dataset of
recordings (each of the 9 males is represented by a different color; each dot
represents one recorded call).

et al.,, 2008; Hervé, 2018). The PPLS-DA significance validation is
composed of two steps. Firstly, a set of discriminant functions is ob-
tained from a training data set and secondly, these functions are used to
test the classification on a validation set. The measure of standard error
is obtained by analyzing the correct assignment percentage of 999
random selections of the original data set, which have been divided into
a fitting and testing set.

2.3.2. Clustering analysis and bootstrap reliability testing

We used an unsupervised classification method (high dimensional
data clustering, HDDC, Bouveyron et al., 2007) to estimate the number
of individual males present within the datasets. HDDC has already been
applied on acoustic data with some success (Ulloa et al., 2018). HDDC is
known to be consistent and reliable with unbalanced datasets because it
is based on gaussian mixture models (Fraley and Raftery, 2002). It is
more parsimonious and flexible than gaussian mixture modelling by
adding a noise term within the model covariance parametrization. The
mixture model aims at identifying the meaningful variables for each
cluster and is fitted with the E-M algorithm. The number of mixture
components of the model maximizing the Bayesian information Cri-
terion (BIC, Shwarz, 1978) is set as the number of clusters. The E-M
algorithm is sensible to the selected random points during its
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initialization. Thus, we ran the clustering algorithm several times in
order to obtain a reliable value for the number of clusters.

The 2017 ‘known’ reference dataset was used for tuning the HDDC
hyperparameters (K = 9 clusters in 2017; the covariance model M; the
threshold ¢ used to parametrize the dimension of each cluster; see R
package HDclassif, Bergé et al., 2012 for details). Each call was re-
presented by its 4 acoustic dimensions previously calculated through
PPLS-DA. We tested 10 values of t namely: 0.000001, 0.00001, 0.0001,
0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2 (adapted from Ulloa et al., 2018)
and the 14 possible models of covariance parametrization. Each asso-
ciation of t and M value were tested.

The clustering algorithm was run 100 times for each association. For
each run, we measured the similarity between the clustering output and
the clustering membership with the adjusted Rand Index (ARIL, Hubert
and Arabie, 1985; package mclust, Scrucca et al., 2016). The ARI ranges
from —1 to 1 and is an indicator of the concordance of two classifi-
cations for the same dataset: when ARI = —1, the classifications are
totally opposed, or different. When ARI = 0, the classifications are
considered random; when ARI = 1, they are identical. The mean ARI
was then calculated for the 100 values and the tuning parameters as-
sociated with the highest mean were selected. The maximum mean
adjusted Rand Index (ARI = 0.91) was found for the simplest covar-
iance model (“abgd”) and a threshold value of 0.1 was assigned. We
thus used these tuning parameters.

Once M and t fitted with our data, the reliability of the clustering
process was further tested using sub-sets of the 2017 reference ‘known’
dataset. Subsets were built by randomly sampling several various males
(random sampling of 1 to 9 males; 900 subsets; 100 trials/subset) or a
various total number of calls (random sampling of 20 to 81 calls; 6200
subsets; 100 trials/subset). We tested models with K values ranging
from 1 to 20.

2.4. Comparison between counting methods

To assess the number of males through the acoustic analysis of calls,
we performed the clustering analysis on each year separately, using the
entire datasets obtained by pooling “known” and “unknown” calls (100
trials/year). The male of 2017 that was geographically isolated was
however excluded because it was located outside the point-counting
area. We calculated the 4 dimensions of each call using the PPLS-DA
functions previously defined with the 2017 “known” dataset for each
year separately. Each acoustic dataset was centered before its projec-
tion in the 2017 acoustic space by subtracting the means of each
acoustic variable calculated on the 2017 “known” dataset.

The number of males (i.e. the number of acoustic clusters) estimated
for each year through the clustering analysis was then compared with
the number of males estimated through the two other counting
methods, 1) the point-count protocol and 2) the long-term observation.

All the acoustic and statistical analyses were performed on R version
3.5.0 (R core team, 2018).

3. Results

3.1. Acoustic discrimination between males and definition of the acoustic
space

The PPLS-DA identified significant acoustic differences between
ptarmigan males, with 4 significant functions that allowed maximizing
individual separation (Fig. 4, mean classification rate = 79%; min-max
classification rate per individual = 0-100%; p = 0.001). Table 2 shows
the correlation between each of the 4 components, the acoustic vari-
ables and shows that all parameter types (pulse number, pulse rate,
durations, frequency parameters) contribute towards separating the
males.
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Table 2

Correlation between acoustic variable and PPLS-DA components.
Acoustic variables Comp 1 Comp 2 Comp 3 Comp 4
PIn.G1 0.86 0.16 0.30 0.061
PIn.G2 0.69 0.24 0.40 0.051
Dur.G1 0.80 0.44 0.15 0.11
Dur.G2 0.58 0.17 0.18 0.013
Sill —0.45 0.42 0.53 0.22
sil2 0.22 0.36 0.71 0.25
Plr.G1 0.48 0.29 0.63 0.22
PIr.G2 0.53 0.26 0.43 0.097
nPVIL.G1 0.058 0.48 0.023 0.030
nPVL.G2 0.46 0.26 -0.19 0.49
Acc.G1 0.079 0.13 0.35 -0.45
Fql.G1 0.34 0.69 0.47 0.020
Fq2. G1 0.76 -0.43 0.049 0.21

3.2. Reliability of high dimensional data clustering

To test the reliability of HDDC, we compared the median number of
males obtained through resampled HDDC with the actual number of
males of each sub-data set. As displayed in Fig. 5, HDDC gives a reliable
estimate of the number of recorded males if this number does not ex-
ceed 5 individuals. HDDC underestimates the number of recorded males
when 6 or more individuals were included in the sub-dataset. It also
underestimates the number of recorded males, when the number of
vocalizations in the sub-datasets are sampled, and consistently predicts
7 clusters (i.e. 7 individuals) for sub-datasets composed of a minimum
of 33 vocalizations (i.e. 41% of the total number of calls) (Fig. 5b).

3.3. Comparison of counting methods’ reliability

In 2017 and 2016, the most congruent results were given by the
acoustic monitoring and long-term observation. In both years, the
point-count protocol resulted in a lower estimation than the two other
counting methods. Still, the long-term results were reached by the
point-count intervals for at least one day per year. Estimation through
the point-count protocol appears to be highly dependent on the day of
observation (this is particularly obvious in 2017, with an estimate of
5-8 males on the first day versus 4-5 males on the second day).

The 2015 results differed significantly from those of 2016 and 2017,
with an apparent under-estimation of the number of males through the
acoustic monitoring method compared to long-term observations.
However, the distribution is widespread and looks bimodal, with the
second mode (6 clusters) being close to the actual number of males (7
individuals). This can be clearly seen in Fig. 6 which displays the
number of males estimated by each counting method (point-count
protocol, long-term observation, acoustic monitoring).

4. Discussion

4.1. Does the acoustic space built from recordings encompass the vocal
variability of rock ptarmigan males?

The relative inconsistency of individual males’ vocal signature
might limit the bioacoustics approach. Although the mean PPLS-DA
classification rate of recorded calls was around 80%, individual rates
differed greatly among males (from 0% to 100%). Moreover, the dis-
criminant functions used to build the acoustic space explained only
36% of the total acoustic variability of calls. A significant proportion of
the variability remains out of reach, suggesting that individual identity
is not the only factor driving the calls’ structure. Rock ptarmigan vo-
calizations are sequences of stereotyped pulses with few frequency
modulations. The acoustic variation between individuals may thus be
reduced when compared to other bird species with more complex sig-
nals. Ptarmigan are non-oscine birds (Kroodsma et al., 1982; Slater,
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Fig. 5. Test of HDDC reliability. (A) Variation of the number of estimated clusters (i.e. estimated number of males) according to the actual number of males randomly
sampled (red dots = actual number of males; boxplots give the distribution of 10,000 resampled HDDCs, i.e. 100 trials with 100 different samples). (B) Variation of
the number of estimated clusters (i.e. estimated number of males) according to the actual number of vocalizations randomly sampled (red line = actual number of
males, i.e. 9 individuals; boxplots give the distribution of 10,000 resampled HDDCs, i.e. 100 trials with 100 different samples). All iterations were made on sub-
datasets randomly drawn from the 2017 ‘known’ dataset (9 males, 81 vocalizations).

1989), and their vocalizations thus lack then the individual variability
that could have been induced by song learning. Inter-individual dif-
ferences in ptarmigan acoustic signals mostly result from differences in
their genetic background and their physiological conditions. It is known
that ptarmigan males are highly philopatric and closely related ge-
netically in the Alps at large scale (Caizergues et al., 2003). In addition
to this, a genetic study of a closely related species, the red grouse
(Lagopus lagopus scoticus), showed that males were highly related at
local scales (Piertney et al., 1998). The genetic variability between rock
ptarmigan males is thus rather low. Moreover, the highly variable al-
pine weather conditions should promote great annual variations in food

11

10

Number of males

availability, especially due to snow cover and the timing of snow melt
(Korner, 2003; Edwards et al., 2007; Jonas, 2008). Thus, males’ phy-
siological state might be different both between individuals (e.g. de-
pending on the individual food intake in each territory) and from year
to year within individuals (depending on the availability of resources).
The variability from year to year is of special concern as vocalizations
from the same male could be very different each year, thus impairing
recapturing males over consecutive years using acoustics only. For this
reason, we considered each year independently within the present
study.

Our analysis demonstrates that, despite these potential limitations

Fig. 6. Comparison between the numbers of males
estimated by the different counting methods. Light
blue violin plots represent the distributions of calls’
clusters (individual males) obtained with acoustic
monitoring data. The greater the violin is dilated, the
greater the number of clusters is represented. Green
bars show the intervals of number of males (between
minimum and maximum) estimated through the
point-count protocol method (one bar per counting
day). Red dots show the number of males estimated
after long-term observations in the field.

2016
Year

2015
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and thanks to their low densities in France (few males present on the
same area), it is possible to rely on individual vocal signatures to
identify local rock ptarmigan males (Linhart and Salek, 2017) and, ul-
timately, to count them. The first requirement is to include only high-
quality recordings in the analysis step (recordings are regularly cor-
rupted by background noise, mostly induced by wind). Besides, analysis
should be mainly performed on the temporal acoustics parameters,
since these are less influenced by noise than the frequency cues. These
conservative choices and the fact that, by design, PPLS-DA optimizes
the separation between males and not the explained variability, can
partly explain the low percentage found. Nevertheless, we were still
able to separate the males well enough for our purpose.

4.2. High dimensional data clustering

A second potential limitation of the bioacoustics method may arise
in cases where some males are represented by only a few recordings,
resulting in unbalanced recording datasets. HDDC is a model-based
clustering, fitted by maximizing log-likelihood estimation (MLE), itself
based on the probabilities of clusters membership. The likelihood will
tend to favour clusters forming large and homogenous groups of points
(Fraley and Raftery, 2002). When the recording dataset is strongly
unbalanced between males, individuals with few vocalizations can be
confounded (i.e. included in the same cluster) with other males that
show close vocalization characteristics. One of the males was over-
represented in the 2017 “known” dataset and its calls formed a cluster
that incorporated vocalizations from some other males. This resulted in
an underestimated total number of individuals. After removing this
male from the dataset (for comparing between methods), the number of
estimated clusters was higher and more reliable. Unbalanced situations
are more likely to arise when the recording effort is mitigated, as was
the case in 2015. This caused HDDC to under-perform, resulting in an
underestimation of the number of males present in the observation
area. Such a difference can be explained when looking at the call’s
clusters obtained through the HDDC method for each year, using both
‘known’ and ‘unknown’ data sets (Fig. 7). In 2015, the vocalizations
were mostly from unknown emitters. As a result, clusters strongly
overlapped each other. Conversely, 2016 and 2017 vocalizations are
more clearly separated into homogenous groups. The recording sam-
pling effort must then be homogeneous over the whole study area and
cautiously planned to optimize the representativity of recording banks
(Heupel et al., 2006).

2015 2016
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4.3. Sampling effort and balance

An adequate acoustic dataset needs a major field effort, due to
frequent harsh weather conditions and difficulties associated with ap-
proaching males’ territories. Despite these constraints, comparable re-
sults were found between bioacoustics and long-term methods. Long-
term observations seem the most reliable approach, although not fea-
sible on a regular schedule given the required workforce. However,
most of the vocalizations were obtained using playbacks and males
were recorded directly within their territories (“known” datasets).
Marginal males were included (Fig. 1) as we assumed that they could be
heard and could fly inside the study area. The area of interest was
therefore slightly larger than the area covered by the point-count pro-
tocol. This increased the probability of male detection during the
acoustic monitoring compared to the point-count protocol. Conversely,
point-count monitoring appears to be less accurate, with a greater
variability of males’ abundance estimations between counting days.

The reduced reliability of the point-count census is not surprising,
given that observers focus generally on only one observation day. We
extended the counting period for a few days to show the variability of
this method in this study. Weather conditions (e.g. wind speed) and
variation in males’ motivation to vocalize may impair the detectability
of males. Moreover, the number of males present in the area fluctuates
through the season and between observation days. In contrary to
northern latitudes (Unander and Steen, 1985; Cotter, 1999), ptarmigan
males differ in their arrival dates depending on their mating status.
Mated males return to their territory in late summer / autumn, while
single males arrive only in spring of the subsequent year. Snow cover
plays an important role in the availability of territories and re-
productive success of the species (Novoa et al., 2008) by delaying the
males’ arrival (one of the 2015 males equipped with VHF was not
present in 2016 — a year during which snow covered its territory- but
arrived in late June in 2017, when the snow cover of its territory started
to dissipate).

Point-count census is a “one-shot” process: it estimates the number
of males at a given day whereas bioacoustics and long-term observation
estimations are obtained over larger time periods. The point-count
protocol is therefore not able to capture changes throughout the mating
season. In practice, only long-term monitoring using direct observations
or acoustic recordings could overcome this variability.

In addition, our study was able to test the reliability of the census
method based on the number of individuals and the number of signals
taken into consideration. We showed that a minimum number of

2017

Comp1

Fig. 7. Calls’ clusters obtained using High Dimensional Data Clustering (HDDC) represented in the first 3 dimensions of the acoustic space. Colored ellipsoids
correspond to the individual clusters (i.e. predicted individual males). The number of clusters selected for each year corresponds to the median (i.e. 4, 6 and 8 for
2015, 2016 and 2017 respectively). Colored spheres represent vocalizations from the ‘known’ dataset (actual individual males). Black tetrahedrons are ‘unknown’
vocalizations. The individual identity of males may differ between years (colors do not correspond to the same males).
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sampled vocalizations were necessary (approximately 33 vocalizations
for 9 individuals, Fig. 5B) to ensure a consistent assessment of males’
number. Although the efficiency of the clustering method is density
dependent, this is on a smaller scale than those of classical counting
methods (Budka et al., 2015; Linhart and Sélek, 2017). To apply our
analysis methodology across populations in different locations, we
would probably need to consider a range of higher signal diversities.
The generalization of our study would thus need to train our statistical
model (PPLS-DA) with recordings from identified males, from other
rock ptarmigan populations, to encompass greater signal variability and
to avoid staying at local scale variability.

4.4. Is bioacoustics monitoring a good solution for rock ptarmigan
population monitoring?

The choice of a monitoring method is the result of a balance be-
tween the scale of the study and the expected results. At a fixed cost, the
same number of automatic recorders allow to gather precise informa-
tion regarding males’ abundance and locations within a restricted area
or could provide simple presence/absence survey of a wider region.
Besides, the bioacoustics approach could enable the censusing of more
areas without requiring an increase of the number of observers and/or
days of observation. This may be particularly advantageous in large and
remote mountain massifs where rock ptarmigan habitats can be situated
in remote areas.
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